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SUMMARY

A numerical investigation on the characteristics of transitional turbulent �ow over series bell-shape
stenoses for a physiological pulsatile �ow is presented in the present study. The �ow behaviours for the
physiological pulsatile �ow are studied by considering the e�ects of the Reynolds number, Womersley
number, constriction ratio and spacing ratio of the stenoses on the pulsatile turbulent �ow �elds. Espe-
cially, the mutual in�uences between the double stenoses under di�erent �ow conditions are considered.
The numerical results show that the variation of these �ow parameters puts signi�cant impacts on the
�ow developments in the arteries with series stenoses. The double stenoses lead to the higher peak
turbulence disturbance and the greater area with comparatively high turbulence intensity distal to the
stenoses in comparison with the single stenosis. The analysis shows that for the physiological pulsatile
�ow, the downstream stenosis usually does not have perceptible in�uences on the upstream �ow �elds.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The occurrence of turbulence in the arteries has long been realized [1]. The blood �ow
through arteries is inherently unsteady due to the cyclic nature of the heart pump and the
Reynolds number can vary from O(1) in the small arterioles to as high as O(103) in the larger
arteries. Although it is �rmly established that steady laminar �ow through a pipe becomes
unstable at a Reynolds number (based on the mean velocity and pipe diameter) of about 2300,
the possibility of generating turbulence is greatly increased by the occurrence of stenosis in
the artery. The obstruction presented by moderate and severe stenosis can lead to a highly
disturbed �ow region at the downstream of the stenosis. These disturbed �ows may either
remain laminar or undergo transition to turbulent �ow, depending upon the speci�c �ow
conditions through the stenosis and the geometry of the stenosis.
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Turbulence represents an abnormal �ow condition in the circulation and the development
of turbulent �ow in arteries has important clinical consequences. Ku [2] pointed out that for
high-grade stenoses, turbulence is the major loss mechanism. Turbulence can have a dramatic
in�uence on the pressure drop and wall shear stresses in the post-stenotic region, both of
which can have a substantial negative in�uence on the cardiovascular system. At the same
time, better understanding of �ow and turbulence in post-stenotic �ow could possibly lead to
more accurate diagnostic procedures for locating severe stenosis in the future [3]. Actually,
numerous experimental studies for steady turbulent �ow in arteries have been carried out by
many researchers, such as Clark [4], Deshpande and Giddens [5] and Ahmed and Giddens [6].
These studies have shown that, even with relatively mild stenosis, transitional �ow or turbu-
lence can be expected distal to the stenosis. The unsteady turbulence experiments are very
di�cult to implement and only a few fundamental experimental studies can be found for the
pulsatile turbulent �ow through stenosis. Yongchareon [7] researched the relationship between
the critical Reynolds number and some dimensionless frequency parameters and between the
critical Reynolds number and the shape of the constrictions, respectively. Ahmed [8] mea-
sured the �ow disturbances in the downstream region of modelled stenosis with pulsatile inlet
�ow for mean Reynolds number 600. The experiments presented are far from su�cient for
recognizing the nature of unsteady turbulent �ow in arteries.
Numerical simulation of blood �ow o�ers a non-invasive means of obtaining detailed �ow

patterns, such as wall shear stress distributions, which are very di�cult to obtain experi-
mentally. Most numerical simulations of turbulent �ows through the stenosis were limited
to steady �ows, such as those by Deshpande [9] and Ghalichi et al. [10]. The numerical
simulation on the pulsatile turbulent �ow is full of challenges. The occurrence of turbulence
makes the process of numerical simulation much more complicated and di�cult. So far, there
are very few works on the pulsatile turbulent �ow in the tube with stenosis. Mittal et al. [3]
applied the Large-eddy simulation to study the pulsatile turbulent �ow in a planar channel
with a one-sided semicircular stenosis. The planar geometric model is not realistic and does
not account for the actual circular arterial lumen. Liao et al. [11] compared the three di�erent
types of pulsatile turbulent �ows in the tube with a single axisymmetrical bell-shape stenosis
and studied numerically the physiological pulsatile �ow �elds under di�erent �ow conditions.
Multiple stenoses in diseased vascular tube may occur because of the formation of the

primary stenosis that can result in downstream circulation �ow. The downstream circulation
in time will accumulate particles and then lead to the formation of a secondary stenosis. As a
result of the secondary stenosis, a circulation zone will form at its downstream, thus resulting
in a third stenosis, etc. The e�ects of these stenoses result in a series of sequence constrictions.
A study on the �ow through double stenoses was initially presented by Lee [12, 13] for laminar
�ow. Damodaran et al. [14] also numerically researched the steady laminar �ows through the
multiple constrictions in tubes for a range of Reynolds number 50–250. Numerical solutions
to the steady turbulent �ows through double bell-shaped stenoses have been reported by
Lee et al. [15] in which the steady turbulent �ows in a circular tube were studied for the
Reynolds number range 100–4000 with di�erent constriction ratios and spacing ratios of
stenoses. To our knowledge, no numerical investigation has studied the pulsatile turbulent
�ow through series arterial stenoses.
In the present study, the physiological pulsatile turbulent �ows in the tube with double

bell-shape stenoses are investigated in detail. The �ow behaviours for physiological pulsatile
�ows are studied by considering the e�ects of the Reynolds number, Womersley number,
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constriction ratio and spacing ratio of the stenoses on the pulsatile turbulent �ow �elds.
Especially, the present work studies the mutual in�uences of the double stenoses in detail
under di�erent �ow conditions.
The blood �ow in the arteries mainly lies in the low Reynolds number range. Under this

�ow condition, it is often seen that the turbulent, laminar and transitional regions coexist
in the stenosed �ow �eld commonly with large separation bubble. As Wilcox [16] pointed
out, therefore, the blood �ow through the arterial stenosis is particularly di�cult to simulate
among the various separated-�ow applications. In the present work, the pulsatile turbulent
�ow �elds in stenosed arterial tubes are simulated numerically using the method which has
been developed by Lee et al. [17, 18] for solving the steady and unsteady incompressible
Navier–Stokes equations and k–! turbulence model equations in a curvilinear co-ordinate
system. The numerical solutions are obtained under the conditions of Newtonian �uid and
rigid wall.

2. GOVERNING EQUATIONS AND NUMERICAL METHODS

Basing on the eddy viscosity concept and turbulence model closure, for axially symmetric
�ow of incompressible Newtonian �uids, the Reynolds-average governing equations of two-
dimensional �ow can be written in axisymmetric co-ordinate system as follows:
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Here u and v are the velocity components in z and r directions, respectively.
The governing equations of Wilcox’s k–! turbulence model [16] for unsteady-state

axisymmetric turbulent �ow are written as follows:
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The eddy viscosity is calculated from

�t =
k
!

(3)

The closure coe�cients for the Wilcox k–! model are

�k =0:09; �k =0:5; �!=0:075; �!=0:5; �!=5=9

In Equation (2a)–(2c), k and ! represent the turbulence kinetic energy and speci�c dissipation
rate, respectively.
As shown in References [17, 18], the arti�cial compressibility approach presented by Chorin

[19] initially just for steady �ow has been developed to solve both steady and unsteady laminar
and turbulent �ows. In the present study, the arti�cial compressibility formulation developed by
Lee et al. [17, 18] is used to solving pulsatile turbulent �ows through arterial stenosis. Basing
on Boussinesq’s hypothesis, therefore, the non-dimensional incompressible Reynolds-averaged
Navier–Stokes equations with the modi�cation of arti�cial compressibility are reformulated in
a generalized curvilinear co-ordinate system with the axisymmetric physical components taken
as the dependent variables:
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In the governing equations with dual time, � is a pseudo-time variable and t is the physical
time. � is an arti�cial compressibility parameter and J is the Jacobian of the transformation.
U;V are contravariant velocities in �; �-direction given by
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and
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�t is the eddy viscosity that is calculated by the k–! turbulence model.
Similar to the Navier–Stokes equations, the k–! model equations are also non-dimension-

alized and reformulated in a generalized curvilinear co-ordinate system taking the axisymmetric
physical components as the dependent variables. It results in the following system of equations
in conservation form with dual time:
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Then the eddy viscosity is obtained from

�t =Re
k
!

(7)

In Equations (4) and (5), the dimensionless variables r∗= r=r0 , z∗= z=r0, u∗= u=u0, v∗=
v=u0, t∗= t=t0, p∗=p=	u20; k

∗= k=u20 and !
∗=!r0=u0 have been used and asterisks are dropped

for brevity. St= r0=(u0t0) and Re= r0u0=� are the Strouhal number and Reynolds number, re-
spectively. Generally, t0 is taken as 1=’ for a pulsatile �ow under the assumption that ’ is
the angular frequency of the pulsatile �ow.
In deriving the Navier–Stokes and turbulence model equations, constant density is assumed

for simplicity. As has been shown above, the system of governing equations can be used to
describe both steady and unsteady �ow. The whole set of di�erential equations is physically
unbalanced until the steady state solution in pseudo-time is reached. The present study is
based on a reasonable assumption that the time scale of the pulsatile phenomena is much
larger than the characteristic time scale of turbulence in large arteries. Actually, Wood [20]
pointed out that the frequency range of the turbulent in a large artery is usually from 102 to
104 Hz while the frequency of the heart rate is about 1–2 Hz.
In the present study, the solution procedure is based on the method of arti�cial compressibi-

lity and uses a decoupled approach to solve the Reynolds-averaged Navier–Stokes equations
and k–! turbulence model equations. The decoupled approach is applied to improve the
e�ciency and �exibility of the code. In the current decoupled approach, the Reynolds-averaged
Navier–Stokes equations are implicitly solved to update the pressure and the velocity �eld;
then the k–! model equations are solved together with the new given velocities to compute
a new turbulent viscosity �eld. The above process is repeated until the convergence criterion
is satis�ed. The Lower–Upper Symmetric-Gauss–Seidel (LU-SGS) implicit algorithm is used
as the time integration scheme for the governing equations because of its e�ciency and
stability. When constructing this scheme, the advantages of recent advances in computational
�uid dynamics are taken into considerations. The LU-SGS method is applied with the use of
upwind-biased and Total Variation Diminishing (TVD) scheme. To calculate the convective
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�ux, an edge-based method is used by calculating and storing the �ux integrals based on
edges. The convective �uxes are discretized by using the appropriate form of Roe’s �ux-
di�erence splitting [17, 21]. The high-order upwind-biased Monotonic Upstream Schemes for
Conservation Laws (MUSCL) scheme with satisfying TVD conditions is used to deal with the
convective terms, which is helpful to stabilize the computation and increase the convergent
speed. This is because the steep gradients exist in the k; ! �elds. In a typical pro�le of !
normal to the wall, the value of ! can vary rapidly from O(104) (even the value is higher
for �ner grids) near the wall to O(1) outside the boundary layer. The high-resolution TVD
scheme is just designed to deal with such large gradients. The viscous terms are evaluated by
the second-order central di�erence. The details and validation of the current numerical method
for incompressible �ows can be found in References [17, 18].
The arti�cial compressibility parameter � in�uences both the stability and the e�ciency in

the numerical computation. However, it is easy to �nd a range of � for which the code can
converge very quickly. As has been referred to in References [17, 18], the current method
is found not to be sensitive to the value of the arti�cial compressibility parameter and the
present code is stable for a wide range of �. In the present study, a constant value of the
parameter � has been used. For all cases, the value of � is set to 100 that is found to give
a good rate of convergence and accuracy for the problems considered.

3. GEOMETRY AND BOUNDARY CONDITIONS

In the present study, the geometrical con�guration of the vascular tube with a stenosis and its
co-ordinate system are shown in Figure 1. The co-ordinate variables (r; z) are de�ned in the
cylinder co-ordinate system; L is the length of the tube under consideration; D is the diameter
of the tube having a constant cross-section; dc is the opening of the constriction; s1; s2 are
distances of the �rst and second stenosis from inlet plane, respectively; and s is the spacing
between stenoses, s=(s2 − s1).
The geometry of the stenosis may be described by the following bell-shaped Gaussian

distribution pro�le [12]:

f(z)=1− ci exp(−cs(z − si)2) (8)

Figure 1. The geometry of the stenosis.
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Figure 2. Time variation of the velocity for the physiological pulsatile �ow, equivalent
pulsatile �ow and simple pulsatile �ow.

where cs is a shape constant; z1; z2 are limits of the �rst constriction and z3; z4 are limits of the
second constriction; ci is constriction ratio (D−dci)=D. c1 is the upstream stenosis constriction
ratios de�ned as c1 = (D − dc1)=D; c2 is the downstream stenosis constriction ratios de�ned
as c2 = (D − dc2)=D. In this study, cs is �xed at 1.0.
The boundary types encountered in the present study are classi�ed as in�ow, out�ow, solid

wall and symmetrical plane. All boundary conditions are imposed using halo cells that are two
rows of �ctitious cells next to the boundary. With this concept, the boundary �uxes can be
treated in a fashion similar to the internal �uxes. On a solid surface, the usual non-slip condi-
tion is applied. At the out�ow boundary the velocities are extrapolated from the interior and
a constant static pressure is imposed. At the in�ow boundary, the velocities are speci�ed and
the pressure is extrapolated from the interior. At the upstream inlet, there is not the known ve-
locity pro�le to be found for di�erent in�ow conditions. Therefore, the computational domain
is extended to ensure the length of 20r0 upstream the �rst stenosis and 20r0 downstream the
second stenosis in order to eliminate the e�ects of inlet and outlet boundary conditions. For the
pulsatile �ows through arterial stenosis in the present study, the average inlet velocity is spec-
i�ed by a physiological pulsatile pro�le as shown in Figure 2. Here u(t) is the same as that
given by other researchers [22, 23]. The physiological �ow is considered here due to its direct
relevance with the investigation of intracardiac �ow, blood vessel stenosis and heart valvular
regurgitation.
In this work, the boundary types encountered when solving k–! equations are also classi�ed

as in�ow, out�ow, solid wall and symmetrical plane. At the in�ow, in nondimensional form
k and ! are set at very low levels, i.e.

kin = 1:5I 2Tu
2
in; !in =

√
kin

C1=4
 lin
(9)
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where IT is the turbulence intensity, usually taken to be 1%, C
=0:09 and lin is the length
scale given by

lin = min(�ywall; 0:1R0) (10)

Here ywall is the normal distance from the wall and �=0:41 denotes the universal von Karman
constant. The non-slip wall boundary conditions for the k–! model equations are

k=0; !=
6�
�!y1

(11)

At the out�ow boundary, the streamwise gradients of k and ! are assumed zero, i.e.

@k
@z
=
@!
@z
=0 (12)

Along the axis of symmetry, the gradients of k and ! in r direction are assumed zero, i.e.

@k
@r
=
@!
@r
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In the present study, the dimensionless Reynolds number, Womersley number and Strouhal
number are de�ned as, respectively,

Re=
u0r0
�

Wo= r0

√
’
�

(14)

St =
Wo2

Re
=
r0’
u0

where r0 is the radius of the tube in�nitely far upstream where the section becomes uniform;
u0 is the maximum value, in the period, of the average velocity over the section of inlet;
’ is the angular frequency of the pulsatile �ow. The Womersley number is an indication
of the main frequency of the �ow. In physiological situations, the frequency of the �ow is
determined by the heart rate.

4. VALIDATION OF NUMERICAL METHOD

In our previous study [17, 18], a variety of computed results have been presented to validate
the present numerical method and computer code. Here two test cases are presented to further
validate the capacity of the current methods for predicting the turbulent �ows in relatively
low Reynolds numbers.

4.1. Steady �ow inside a tube with a constriction for Re=2000

This case deals with the steady turbulent �ow inside a circular tube with a constriction for
a relatively low Reynolds number. This �ow has been studied experimentally by Ahmed
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Figure 3. Streamlines for the turbulent �ow through a constriction at Re = 2000.
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Figure 4. Comparison of computed and measured [6] axial velocity pro�les at di�erent axial positions.

et al. [6]. The geometry of the axisymmetric constriction may be described by the following
pro�le:

r
r0
= 1− �

2r0

(
1 + cos


z
z0

)
; −z0 6 z 6 z0 (15)

In this case, �= 1
2r0, z0 = 2:0.

The Reynolds number is set to 2000, which is based on the diameter and the average
inlet velocity. In this case, the computational domain is extended from z-position −15r0 to
18r0. Below presented are some results computed on a 231× 33 grid, which gives su�cient
resolution, as veri�ed by mesh re�nement. Figure 3 shows the geometrical shape of the
computational domain and streamlines computed by the current method.
Figures 4 and 5 present the distributions of the streamwise velocity at di�erent stations and

centerline velocity, respectively. It can be found that the calculation yields good agreement
with the measurements given by Ahmed et al. [6]. It is well known that most turbulence
models cannot scale well in and around the recirculation zone. Therefore, the agreement
between the current numerical results and experimental data is satisfactory. As shown in
Reference [15], another case for the same geometry at Re=15000 has been calculated in
comparison with the experimental data and computational data given by other researchers.
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Figure 5. Distribution of the centreline velocity through the constriction (the experimental
data originated from Ahmed et al. [6]).

These two cases illustrate that the current numerical solver is capable of simulating turbulent
�ows in the stenosed tube for both relatively low and high Reynolds numbers, which are
usually characterized by large recirculating vortex, with good accuracy.

4.2. Oscillating turbulent �ow in a straight pipe

The problems of periodic turbulent pipe �ow have been studied by many researchers experi-
mentally as well as computationally for the decades [24, 25]. As pointed out by Carpinlioglu
et al. [26], however, the mechanism involved in turbulence generation in pulsatile pipe �ows
has not been recognized clearly so far. This case is computed here to test the ability of current
method to simulate the unsteady turbulent �ow. The calculation bases on a pipe length of
50 radii and a 161 × 31 grid. At the entrance, an oscillating velocity pro�le, which is time
dependent and uniform over the cross-section, is imposed as follows:

Uin(t)= |um| sin(!t) (16)

The dimensionless Valensi number and Reynolds number are de�ned, respectively, as

Va=
!r2

�
; Re=

2umr
�

(17)

where r is the radius of the pipe. The Reynolds number and Valensi number used here is
19 300 and 272, respectively. The case with the same Va and Re number has also been
studied numerically by Ahn and Ibrahim [25]. As shown in References [24, 25], the critical
Reynolds number for a oscillating pipe �ow can be obtained by

Rec√
Va
=882 (18)

It can be seen that the current Reynolds number is only a bit higher than the critical Reynolds
number given by Equation (18) for the Valensi number 272. The experiment data indicate
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Figure 6. Turbulent axial velocity distribution versus crank angle during a cycle.

that the �ow regime is in between laminar and turbulent �ow (transitional regime) [25]. In
this case, the number of time steps per cycle is taken to be 200.
The instantaneous velocity computed in this case versus !t at di�erent radial locations

is shown in Figure 6. The pro�les of the velocity amplitude normalized by the centerline
value and the phase di�erences between the velocity at any radial position and that of the
centreline versus the radial distance are compared with the experimental data given by Ohmi
and Iguchi [24] in Figure 7. It can be found from Figure 6 that velocity amplitude increases
with the distance from wall increasing. Also the phase di�erence between the velocity near
the wall and that near the pipe centerline increases with the distance. This behaviour can
be seen more clearly from Figure 7. As shown in Figure 7, the present results for both
velocity amplitude and phase di�erences have a reasonable agreement with experimental data.
Actually the phase di�erence pro�les produced by the present method �t the experimental
data of Ohmi and Iguchi [24] better than those presented by Ahn and Ibrahim [25] (their
Figure 5(a)). In this case, therefore, the current numerical method succeeded in predicting the
pulsatile turbulent �ow in a transitional �ow range within an allowable error.

5. RESULTS AND DISCUSSION

In the present study, the physiological pulsatile turbulent �ows through double bell-shape
stenosis are investigated in detail. The geometry of the stenosis is speci�ed by Equation (8).
As mentioned in the previous studies for a single stenosis in Reference [11], a 201 × 41
grid, which was highly stretched in the radial direction, was used in the cases with single
stenosis and gave su�cient resolution as veri�ed by mesh re�nement. Here, the grid number
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Figure 8. The (crude) computational grid in the stenosed region.

is increased according to the distance between the double stenoses so as to ensure almost the
same grid density in z direction as that for the cases with single stenosis. To decide the near-
wall grid sizes, a fully developed steady turbulent pipe �ow at the Reynolds number 4000
has �rstly been computed with a grid in which the two points at cell centers closest to the
wall lie below y+ =1. Then the same grid distribution in r direction is chosen in the present
pulsatile cases to ensure the enough grid re�nement near the wall. The (crude) computational
grid in the stenosed region is shown in Figure 8. The number of time steps per cycle is taken
to be 200, which corresponds to a non-dimensional real-time step �t=2
=200.
In order to have a relatively thorough understanding of the physiological pulsatile �ow

through the double stenoses, the e�ects that the Reynolds number, the Womersley number,
the constriction ratio and spacing ratio of stenoses on the �ow �elds are considered here. For
all cases in this study, the �ow characteristics are usually presented at the selected instants. The
selected instants are shown in Figure 2 because these points include the key ones of the physio-
logical velocity pro�les. The selected instants are 0; 0:165T; 0:32T; 0:415T; 0:6T; 0:8T; 0:9T .
At the instants 0; 0:32T; 0:6T and 0:9T , the net �ow rates are zero or near zero. The �ow
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rate reaches its positive peak value at the instant 0:165T and reaches its negative peak value
at the instant 0:415T . The non-dimensional positive peak value is 1 and the negative peak
value is just 0.252 that is only about one-fourth of the positive peak value.

5.1. Flow development in whole pulsating cycle

In this study, the physiological pulsatile �ow at the Reynolds number 2000, Womersley num-
ber 30, constriction ratio 0.5 and spacing ratio 2 is considered as a basic case. The instan-
taneous streamline contours over a cycle under these conditions are presented in Figure 9
at the selected instants. The developments of the physiological pulsatile �ow through double
stenoses are discussed here.
Figure 9 shows that there is always a vortex to occur between the double stenoses at most

instants except t=0:08T that is in the acceleration period. The size of the vortex between
the double stenoses changes with time in a similar way to that of the vortex behind the
second stenosis. Therefore, the vortex development in the downstream of the double stenoses
is observed here. At the start of �ow acceleration period, the �ow looks like an attached
�ow as shown in Figure 9(b) at t=0:08T . A weak recirculating vortex forms distal to the
second stenosis at t=0:165T when the �ow rate reaches its positive peak point as shown
in Figure 9(c). After the peak �ow rate point, the �ow begins to decelerate. However, the
recirculating vortex becomes stronger and the core of the vortex moves towards the down-
stream of the stenoses until t=0:32T . After passing through the �rst zero �ow rate point
t=0:32T , the inlet �ow velocity becomes negative and vortex core position migrates towards
the centreline as shown in Figure 9(f), 9(g). The vortex core continues to move downstream
at t=0:5T . At the time level t=0:6T when the �ow rate is nearly zero, a recirculation zone
occurs proximal to the �rst stenosis as well as distal to the second stenosis as shown in Figure
9(h). At this instant, the vortex distal to the stenosis becomes weaker and has migrated back
towards the wall. Since then, the �ow rate becomes very small although the �ow direction
changes with time. Therefore, the vortices proximal and distal to the stenoses tends to decay
as seen from Figure 9(i) and (j) at t=0:8T and 0:9T , respectively. At the end of the cycle,
i.e. t=0 or T , the net inlet �ow becomes zero again. The recirculation zones occupy both
distal and proximal region to the stenoses and the large recirculation zones �ll most of �ow
�eld.

5.2. The e�ect of the Reynolds number

The e�ect of the Reynolds number on the physiological pulsatile �ow through double stenoses
is discussed in this work. Figures 10 and 11 show the details of the �ow �elds at Re=1000
and 4000, respectively. The other parameters keep constant with Wo=30, c2 = 0:5 and s=D=2.
Referring to Figures 9–11, we can �nd that with the Reynolds number increasing, the �ow
�elds become more complicated. For the Reynolds number 4000, more vortices are generated
in �ow �elds at t=0, 0.6 and 0.9 when the �ow rates approach zero in comparison with
those for the Reynolds numbers 1000 and 2000.
The mean streamline contours through the double stenoses for Re=1000, 2000 and 4000

are presented in Figure 12(a)–(c), respectively. There is always a vortex to occur between
the double stenoses and another vortex to occur distal to the second stenosis for the three
Reynolds numbers. Both the vortex between the double stenoses and the vortex behind the
second stenosis have decreasing sizes with the Reynolds number increasing. This should be
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Figure 9. The streamlines of turbulent �ows in the tube with double stenoses for the physiological
pulsatile �ow at Re = 2000, Wo = 30, c2 = 0:5 and s=D = 2.
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Figure 10. The streamlines of turbulent �ows in the tube with double stenoses for the physiological
pulsatile �ow at Re = 1000, Wo = 30, c2 = 0:5 and s=D = 2.

due to that the higher Reynolds number may lead to the stronger turbulence in the �ow �eld
which can suppress the development of separation zones near the stenosis.
The instantaneous wall vorticity and disturbance intensity distributions at the peak forward

�ow rate are presented in Figure 13 for double stenoses at Re=1000, 2000 and 4000. The
disturbance intensity is calculated by

√
2k in which k denotes the non-dimensional turbulence

kinetic energy. Therefore, the disturbance intensity can be referred to as an indicator of
turbulence intensity. Figure 13(a) shows that there are two peak values in wall vorticity
distribution both of which occur slightly upstream of the two throats, respectively. It can be
seen that the both peak values go up monotonically with the Reynolds number increasing.
Furthermore, the downstream peak value is a bit higher than the upstream peak value for
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Figure 11. The streamlines of turbulent �ows in the tube with double stenoses for the physiological
pulsatile �ow at Re = 4000, Wo = 30, c2 = 0:5 and s=D = 2.

each Reynolds number. From Figure 13(b), it can be seen that the series stenoses produce
great disturbance in the pulsatile �ow �elds. The �ow upstream of the �rst stenosis has low
centreline disturbance intensity. After passing through the stenoses, the disturbance intensity
goes up rapidly. The disturbance intensity distribution for each Reynolds number has more
than one peak point. The maximum peak value of disturbance intensity evidently grows up
with the Reynolds number increasing.
The time-averaged wall vorticity distributions in one cycle for Re=1000, 2000 and 4000

are displayed in Figure 14. Figure 14 shows that the both peak values of mean wall vor-
ticity also increase with Reynolds number increasing. Di�erent from the situation for the
instantaneous wall vorticity distribution shown in Figure 13(a), the second peak value of the
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Figure 12. Mean streamlines by averaging in time over one cycle for di�erent
Reynolds numbers with double stenoses.
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Figure 13. The distributions of the instantaneous �ow parameters at the peak forward
�ow rate for di�erent Reynolds numbers with double stenoses. (a) Wall vorticity;

(b) centerline disturbance intensity.

mean wall vorticity is less than the �rst peak value for each Reynolds number. This situa-
tion is similar to that for the steady turbulent �ow through the double stenoses discussed in
Reference [15].
According to the analysis above, the higher Reynolds number can lead to more compli-

cated �ow �eld. The peak wall vorticity and centerline disturbance intensity in the �ow
�eld evidently grows up with the Reynolds number increasing. The Reynolds number has
analogous in�uences on the time-averaged �ow characteristics for the physiological pul-
satile �ow with those for steady turbulent �ows which were shown in
Reference [15].
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Figure 14. The time-average wall vorticity distribution in one cycle for di�erent
Reynolds numbers with double stenoses.

5.3. The e�ect of the Womersley number

The details of �ow �elds for Wo=10 and Wo=50 with Re=2000, c2 = 0:5 and s=D=2 are
also presented here to examine the e�ect of the Womersley number. The streamline contours
for the above Womersley numbers are shown in Figures 15 and 16, respectively. For Wo=10,
it can be seen that corresponding to the non-zero instantaneous �ow rate, there is always a
recirculating vortex to form in the downstream of stenoses along the �ow rate direction. For
Wo=30 and 50, the recirculation zone almost always occurs on the right side of stenosis
except at the instants when the �ow rate is zero or near zero. This is because for the high
Womersley numbers, the �ow �elds are strongly in�uenced by the �ow rates at the previous
time levels. For the physiological �ow, the forward �ow rate is much higher than the backward
�ow rate and therefore usually predominates in the periodic development of the �ow �eld.
Besides, the recirculation zones always prefer to simultaneously occur both proximal and distal
to the stenosis at the instants 0, 0:32T , 0:6T and 0:9T when the net �ow rate approaches zero
for each Womersley number.
The instantaneous wall vorticity and disturbance intensity distributions at the peak for-

ward �ow rate are presented in Figure 17 for the Womersley numbers 10, 30 and 50.
Figure 17(a) shows that the �rst peak value of instantaneous wall vorticity at this instant
is not signi�cantly a�ected by the variation of the Womersley number while the second peak
value grows up to some extent with the Womersley number increasing. It can be found that
the wall vorticity for Wo=30 and 50 can recover more rapidly to the upstream level than that
for Wo=10 after passing through the stenoses. Figure 17(b) indicates that the disturbance
intensity distribution has more than one peak points and the maximum peak points are all
located downstream of the second stenosis for the three Womersley numbers. The maximum
peak value of centerline disturbance intensity reduce with the Womersley number increasing,
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Figure 15. The streamlines of turbulent �ows in the tube with double stenoses for the physiological
pulsatile �ow at Re = 2000, Wo = 10, c2 = 0:5 and s=D = 2.

which illustrates that the turbulence intensity decreases with the Womersley number increasing
for the same Reynolds number. This observation is consistent with the situation for the oscil-
lating �ow in a straight circular pipe [25, 26]. It can be inferred that for a higher Womersley
number, the generated disturbance does not have enough time to fully grow up and soon is
suppressed by the next acceleration phase in which the favourite pressure gradient becomes
strong.
The time-averaged wall vorticity distributions over one cycle for Wo=10, 30 and 50 are

shown in Figure 18. From this �gure, it can be seen that the second peak values in the mean
wall vorticity distributions are almost the same for the three Womersley numbers while the �rst
peak value for Wo=50 is a bit lower than those for Wo=10 and 30. In total, the peak values
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Figure 16. The streamlines of turbulent �ows in the tube with double stenoses for the physiological
pulsatile �ow at Re = 2000, Wo = 50, c2 = 0:5 and s=D = 2.

of mean wall vorticity are not greatly in�uenced by the variation of the Womersley number,
which is in agreement with the situation for the instantaneous wall vorticity distribution at
t=0:165 as discussed above. Figure 18 shows that for the Womersley numbers 10 and 30,
the downstream peak value is evidently lower than the upstream peak value in the mean wall
vorticity distribution.

5.4. The e�ect of the constriction ratio of stenoses

In order to consider the e�ect of the constriction ratio of stenosis, the constriction ratio of the
upstream stenosis in a tube is �xed at 0.5 while the downstream stenosis is allowed to vary.
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Figure 17. The distributions of the instantaneous �ow parameters at the peak forward
�ow rate for di�erent Womersley numbers with double stenoses. (a) Wall vorticity;

(b) centerline disturbance intensity.
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Figure 18. The time-average wall vorticity distribution in one cycle for di�erent
Womersley numbers with double stenoses.

The numerical results are compared for the constriction ratios of the downstream stenosis
c2 = 0:2, 0.5 and 0.6 with the same Re and Wo. The streamline contours in one cycle for
c2 = 0:2 and 0.6 with Re=2000 and Wo=30 are presented in Figures 19 and 20, respectively.
Actually, from Figure 19, it can be noticed that the vortex distribution in the �ow �elds for
c2 = 0:2 are very similar to that for single-stenosis case (shown in Reference [11]). Evidently,
the second stenosis with c2 = 0:2 has such small constriction ratio that it have not put great
impact on the �ow �eld development. Referring to Figures 9, 19 and 20, it can be found that
with the second constriction ratio increasing, the �ow �elds become more complicated. There
are more vortices to be generated in the �ow �elds for c2 = 0:5, 0.6 than those for c2 = 0:2.
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Figure 19. The streamlines of turbulent �ows in the tube with double stenoses for the physiological
pulsatile �ow at Re = 2000, Wo = 30, c2 = 0:2 and s=D = 2.

The vortex distribution in the �ow �elds for c2 = 0:6 is very similar to that for c2 = 0:5. But
the vortices downstream of the second stenosis for c2 = 0:6 are stronger than the corresponding
vortices for c2 = 0:5.
The mean streamline contours for the c2 = 0:2, 0.5 and 0.6 are shown in Figure 21(a), (b)

and (c), respectively. Figure 21 shows that there is a vortex to occur between the double
stenoses for the three constriction ratios. There is another vortex to occur distal to the second
stenosis for c2 = 0:5 and 0.6 while it is not case for c2 = 0:2 because of too small constriction
ratio. It can be found that the vortex distal to the second stenosis has increasing size with the
constriction ratio increasing.
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Figure 20. The streamlines of turbulent �ows in the tube with double stenoses for the physiological
pulsatile �ow at Re = 2000, Wo = 30, c2 = 0:6 and s=D = 2.

The instantaneous wall vorticity, wall pressure, centreline velocity and disturbance intensity
distributions at the peak forward �ow rate are shown in Figure 22 for c2 = 0:2, 0.5 and 0.6.
It can be found that the upstream peak values of the distributions of these �ow variables for
all the three constriction ratios are almost fully the same, which mean that the downstream
stenosis does not make perceptible contributions to the upstream �ow �elds. At the same
time, the downstream peak values of these instantaneous variables all grow up dramatically
with the constriction ratio c2 increasing. Figure 22(a) shows that the downstream peak wall
vorticity for c2 = 0:6 is so high that its value is more than twice as high as that for c2 = 0:5
although the area reduction caused by the second stenosis increases only from 75 to 84%
when c2 = 0:5 and 0.6. From Figure 22(b) and (c), it can be seen that the wall pressure
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Figure 21. Mean streamlines by averaging in time over one cycle for di�erent constriction ratios.
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Figure 22. The distributions of the instantaneous �ow parameters at the peak forward �ow rate for
di�erent constriction ratios with double stenoses.
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Figure 23. The time-average wall vorticity distribution in one cycle for the di�erent
constriction ratios with double stenoses.

drop and peak centreline velocity caused by the second stenosis increase rapidly with the
constriction ratio c2 increasing. Therefore, the severe stenosis may cause the pressure loss to
increase dramatically. Figure 22(d) shows that the severe constriction ratio leads to a dramatic
increase of the turbulence intensity in the �ow �eld. It is surprising that the variation range
of peak disturbance intensity caused by the stenosis with c2 = 0:6 is more than six times and
two times as high as those by the stenoses with c2 = 2 and 0.5, respectively.
The time-averaged wall vorticity distributions over one cycle for c2 = 0:2, 0.5 and 0.6 are

presented in Figure 23. The distributions of mean wall vorticity before the second stenosis
are fully the same for the three cases c2 = 0:2, 0.5 and 0.6. At the same time, the increase of
the constriction ratio c2 causes the downstream peak mean wall vorticity to rapidly grow up.
This observation is consistent with that for the distribution of the instantaneous wall vorticity
at the peak forward �ow rate.

5.5. The e�ect of the stenosis spacing ratio

The behaviours of the physiological pulsatile �ow through double stenoses are investigated
with stenosis spacing ratios from 2 to ∞ at Re=2000 and Wo=30. The constriction ratio
of the second stenosis is also set to 0.5 as well as that of the �rst stenosis. The mean
streamline contours through the double stenoses for s=D from 2 to ∞ are presented in
Figure 24. It can be seen that the recirculation zone �lls part of the valley region between the
two stenoses for s=D=2 and 3. When s=D is 4, 5 and ∞, the vortices between the double
stenoses keep constant and have almost the same size because the valley region is enough
large and has less limitation to the formation of vortex. The size of the recirculation zone
distal to the second stenosis decreases with s=D increasing until s=D reaches 4. For s=D=5,
the size of the corresponding recirculation zone becomes slightly larger than that for s=D=4
and is still less than that for s=D=2. Figure 24 shows that the vortex behind the second
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Figure 24. Mean streamlines by averaging in time over one cycle for di�erent
spacing ratios with double stenoses.

stenosis in the double-stesnosis case is usually smaller than the corresponding vortex in the
single-stenosis case (s=D=∞). As mentioned before, the forward �ow rate predominates for
the physiological pulsatile �ow. Therefore, the double stenoses can cause the higher turbulence
intensity which lead to the smaller vortex in the downstream of the stenoses than the single
stenosis.
The instantaneous wall vorticity and disturbance intensity distributions at peak forward �ow

rate are presented in Figure 25 for the spacing ratios s=D=2, 3, 4 and 5. It can be found again
that the distributions of instantaneous wall vorticity and disturbance intensity in the vicinity
of the upstream stenosis are almost the same for all the spacing ratios. This illustrates that
the downstream stenosis do not have any evident in�uences on the upstream �ow �elds for
di�erent spacing ratios. Figure 25(a) shows that the downstream peak value of wall vorticity
increases with spacing ratio increasing until the spacing ratio s=D reaches 4 and after that,
the downstream peak value begins to reduce. The distribution of the centerline disturbance
intensity has the same trends as that of the wall vorticity, as shown in Figure 25(b). It is
demonstrated that in this work, the double stenoses have the strongest superposed e�ects on the
�ow �elds when the distance between the double stenoses is 4D. When the distance between
the double stenoses is more than 4D, the �rst stenosis has a weaker and weaker e�ect on
the �ow �eld downstream of the second stenosis with s=D increasing. The downstream peak
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Figure 25. The distributions of the instantaneous �ow parameters at the peak for-
ward �ow rate for di�erent spacing ratios with double stenoses. (a) Wall vorticity;

(b) centerline disturbance intensity.
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Figure 26. The time-average wall vorticity distribution in one cycle for the di�erent
spacing ratios with double stenoses.

values of centerline disturbance intensity are much higher than the corresponding upstream
ones, respectively. Especially for s=D=4, the downstream peak disturbance intensity reaches
about 2.5 times as high as the upstream one.
The time-averaged wall vorticity distributions over one cycle for s=D=2, 3, 4, 5 and ∞ are

shown in Figure 26. Figure 26 shows that the mean wall vorticity distributions for di�erent
spacing ratios have the similar characteristics to the instantaneous wall vorticity distributions
as shown in Figure 25(a) although the values of the former are all much less than those
of the latter. From Figure 26, it can be seen that the distributions of the wall vorticity near
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the �rst stenosis for the double-stenosis model, such as s=D=2, 3, 4 and 5, are almost fully
the same as that for s=D=∞ that represents a single-stenosis model. This means that the
downstream stenosis do not put any perceptible impact on developments of the upstream
�ow �elds. Evidently, this is because the forward �ow rate far exceeds the backward �ow
rate and so predominates in the periodic development of the �ow �eld for the physiological
�ow.

6. CONCLUSIONS

In the present study, the �ow behaviours through double stenoses for the physiological pulsatile
�ow are studied by considering the e�ects of the Reynolds number, Womersley number,
constriction ratio and spacing ratio of the stenoses. Especially, the mutual in�uences between
the double stenoses under di�erent �ow conditions are considered.
The Reynolds number can greatly in�uence the physiological �ow �elds through the double

stenoses. The vortices both between the double stenoses and behind the second stenosis have
decreasing sizes with the Reynolds number increasing. The peak values of the wall vorticity
and centerline disturbance intensity increase rapidly with the Reynolds number increasing.
Totally, the peak values of wall vorticity are not greatly in�uenced by the variation of the
Womersley number. The peak turbulence intensity in the �ow �elds decreases with the Wom-
ersley number increasing for the same Reynolds number. With the constriction ratio of the
downstream stenosis increasing, the �ow �elds become more complicated and have more re-
circulating vortices to form. All the downstream peak values of the �ow variables considered
grow up dramatically with the constriction ratio c2 increasing. The severe constriction ratio
leads to a miraculous increase of the turbulence intensity in the �ow �eld. The behaviours of
the physiological pulsatile �ow are investigated with di�erent spacing ratios between double
stenoses from 2 to ∞. The double stenoses lead to the higher peak turbulence disturbance
and the greater area with comparatively high turbulence intensity distal to the stenoses in
comparison with the single stenosis. The downstream peak values of wall vorticity and cen-
terline disturbance intensity increases with spacing ratio increasing until the spacing ratio s=D
reaches 4 and after that, the downstream peak value begins to reduce. It is inferred that under
the current �ow conditions, the double stenoses have the strongest superposed e�ects on the
�ow �elds when the distance between the double stenoses is 4D. When s=D is more than 4,
the �rst stenosis has a weaker and weaker e�ect on the �ow �eld downstream of the second
stenosis with s=D increasing further. Besides, with the same Reynolds number and Womers-
ley number, the distributions of the important �ow variables considered here in the vicinity
of the upstream stenosis are almost the same for di�erent constriction ratios c2 and spacing
ratios s=D, which illustrates that the downstream stenosis usually does not have perceptible
in�uences on the upstream �ow �elds. This suggests that for the physiological pulsatile �ow,
the forward �ow rate predominates in the periodic development of the �ow �eld.
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